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Investigating Consumer Decision Strategies With
Systems Factorial Technology

Gavin J. Coopera,∗, Guy E. Hawkinsa

aSchool of Psychology, University of Newcastle, Callaghan, NSW, 2308, Australia

Abstract

People routinely make multi-attribute decisions about consumer items, such as

products and services. The potentially complex decision strategies underlying

such consumer decisions have recently been investigated in detail, with most

researchers restricting their focus to a relatively small subset of heuristics so as

to retain tractability in analyses and identifiability of parameterized cognitive

models. Many of these heuristics can be conceived as special cases of a smaller

number of overarching dimensions: processing all or a subset of the attribute in-

formation describing the consumer options, and processing that attribute infor-

mation in series or in parallel. These higher-level dimensions correspond to two

latent factors of focus in Systems Factorial Technology (SFT), a non-parametric

modeling technique that aims to uncover the mental architectures that generate

observed decision behavior. Here, we develop a simplified consumer decision

scenario and report proof-of-concept evidence regarding the ability of SFT to

discriminate between mental architectures, and as a consequence whole classes

of decision strategies, in the newly developed consumer task. Our results sug-

gest that most people make decisions prior to processing all available product

information. Furthermore, people appear to process numerically presented at-

tribute information in serial, and pictorially presented attribute information in

parallel. This extension of SFT beyond its classic domain of application in
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perceptual processing provides a relatively simple, non-parametric approach to

investigating consumer decision strategies.

Keywords: Consumer choice, Decision strategy, Mental architecture,

Information processing, Systems Factorial Technology (SFT)

1. Introduction

Consumers routinely make decisions about products and services. Some are

largely inconsequential; what to eat for breakfast or which socks to purchase.

Others are consequential with substantial implications for financial, physical,

and mental well-being; should I make this investment or should I take this5

course of chemotherapy. Businesses, non-profits and governments invest great

effort persuading consumers to select one option over others. Central to these

efforts is the desire to understand how consumers think and behave so as to

improve products and services, more effectively target potential customers, and

create competitive advantage. Understanding consumer thought and behav-10

ior involves understanding the strategies consumers use to process information

about products and services.

The strategies people use to select between consumer options have been

studied for decades (for a seminal review, see Payne et al., 1993). These decision

strategies, often referred to as heuristics, aim to describe how a decision maker15

shifts from an initial state of knowledge to a final state of knowledge at which

point they feel confident that a decision has been made. The cognitive steps

that fall between the initial and final state of knowledge generally consider

how people process information, when they stop searching for information, and

ultimately how they select an option.20

In this paper, we first provide an overview of consumer decision strategies,

and then highlight previously unidentified links between features of these deci-

sion strategies and the mental architecture of information processing systems

– statements about how people process and integrate multiple sources of in-

formation to inform decisions – as studied in the domains of perception and25

2



cognition. Our aim is to classify consumer decision strategies into a smaller

subset of higher-level mental architectures that are common to multi-attribute

decisions in the consumer and perceptual domains; this approach assumes that

the consumer decision strategies (outlined below) are specific model implemen-

tations derived from general mental architectures. Table 1 provides a first-pass30

at this classification, and is outlined in detail later. With this classification

in place, we then present two experimental tests of a consumer-based decision

task. Owing to our classification of decision strategies into a smaller set of

mental architectures, we draw upon a suite of analysis tools known as Systems

Factorial Technology (SFT; Townsend & Nozawa, 1995) to rule in or rule out35

different mental architectures in different experimental contexts. This allows us

to determine the viability of whole classes of consumer decision strategies in the

contexts under investigation.

Table 1: Fifteen consumer decision strategies previously proposed in the literature (column

2; for review, see Pfeiffer, 2012), with our assessment of their corresponding processing ar-

chitectures (column 3). Through the methods of Systems Factorial Technology (SFT), each

processing architecture predicts a unique pair of the Mean Interaction Contrast (MIC) and

Survivor Interaction Contract (SIC) as computed from response time data (columns 4 and 5).

Set Decision Strategy Possible Architectures MIC Predictions SIC Predictions

1

Lexicographic heuristic
Self-terminating,

serial
MIC = 0 SIC(t) is flatMinimum difference lexicographic rule

Elimination by aspects

2

Compatibility test

Self terminating,

(serial or parallel)

MIC = 0

or

MIC > 0

SIC(t) is flat

or

SIC(t) is positive

Conjunctive strategy

Satisficing heuristic

Satisficing-plus heuristic

3

Disjunctive strategy
Exhaustive,

(serial or parallel)

MIC = 0

or

MIC < 0

SIC(t) is negative → positive

with equal sized deflections

or SIC(t) is negative

Dominance strategy

Simple majority decision rule

4

Equal weight heuristic

Coactive MIC > 0
SIC(t) is negative → positive

with larger positive deflection.

Weighted additive rule

Additive difference strategy

Majority of confirming dimensions heuristic

Frequency of good and/or bad features heuristic
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1.1. Consumer Decision Strategies

Here, we provide a non-exhaustive characterization of decision strategies40

that are relevant to our thesis; for more detailed coverage we refer the reader

to previous reviews of the topic (Payne et al., 1993; Pfeiffer, 2012; Riedl et al.,

2008). Throughout, we suppose a decision maker is considering products that

are described by two dimensions or attributes, such as price and quality, though

the issues we consider can be generalized to cases with more than two attributes.45

We refer to consumer products with the more generic term option, and to in-

troduce specific decision strategies we assume the decision maker is presented

with an exemplar option that is high in both price and quality; high price is

a negative feature, high quality is a positive feature. We also note that across

different consumer contexts options might be presented in sets of two or more50

available options where the task is to select the most (or least) preferred option,

or they might be presented one option at a time where the task is to accept or

reject the option from further consideration according to some criterion/criteria.

The various decision strategies proposed in the literature differ with respect

to their characteristic assumptions about how people process the attribute infor-55

mation that defines each option. Some strategies propose that decision makers

compare an option’s attributes – the specific price and quality rating on offer –

to an aspiration level, the threshold or ‘cutoff’ for what is deemed an acceptable

level of the attribute. A simple example of an aspiration level is the maximum

price a decision maker will consider for a given product category; generally,60

once the aspiration level is met (not met) the corresponding attribute is deemed

positive (negative). Strategies that propose an option with a negative value on

one or more attribute/s cannot be ‘made up’ or compensated by positive values

on other attributes are known as non-compensatory ; in our example, a decision

maker might reject the option because the price is too high, independent of65

whether the quality is excellent or terrible.

Many, though not all, influential non-compensatory strategies implicitly or

explicitly assume the use of aspiration levels. For instance, the satisficing heuris-

tic (Simon, 1955) states that the attributes of an option are compared against
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their corresponding aspiration levels. As soon as the decision maker encounters70

an attribute that does not meet its aspiration level, the option is rejected and

the next option is considered; a choice is made once all attributes of a single

option exceed their aspiration levels, and no further options are considered (i.e.,

the satisficing heuristic simply considers options in the order they appear and

does not necessarily consider all available options). Similar to the satisficing75

heuristic, though considering all available options prior to choice commitment,

some strategies will reject an option once k attributes violate their correspond-

ing aspiration levels where k ≤ m (compatibility test; Beach & Mitchell, 1987),

m is the number of attributes, and k set by the decision maker; the degenerate

cases are also considered different strategies, where k = 1 (conjunctive strategy;80

Coombs & Kao, 1955) or k = m (disjunctive strategy; Coombs & Kao, 1955).

Aspiration levels are also used in compensatory strategies, which assume that

a negative value on one attribute is traded off against, or can be compensated by,

a positive value on another attribute; in our example, a decision maker might be

willing to bear the high price of the option because they believe they are receiving85

an option of high quality. The motivating idea behind compensatory strategies

is that the decision maker forms an overall impression of an option’s attributes,

rather than a focus on any attribute in particular. This ‘overall impression’

might be derived through a relatively simple cognitive process such as using

aspiration levels to generate a simple tally of the frequency of ‘good’ (met the90

aspiration level) and ‘bad’ (did not meet the aspiration level) attributes of an

option (Alba & Marmorstein, 1987; Montgomery & Svenson, 1976); an attribute

might also be ‘neutral’ (has no effect on the decision). Different decision rules

can then be applied to the tallies such as selecting the option with the largest

number of good attributes, the fewest bad attributes, or some maximization95

operation over a combination of good and bad attributes.

Aspiration levels are not common to all decision strategies, though; the

trade-off embodied in compensatory strategies could take place without any ref-

erence to aspiration levels. For example, the additive model (Fishburn, 1970)

and weighted additive models (Tversky, 1969; also known as multi-attribute100
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utility theory, Montgomery & Svenson, 1976) suppose that the ‘overall impres-

sion’ of an option is derived through a relatively demanding cognitive process

where a subjective value or utility is assigned to each of an option’s attributes,

summing those utilities across attributes, and comparing an option’s summed

utility to an internal or external criterion and/or the utility of other available105

options. Similarly, not all non-compensatory strategies assume aspiration levels.

For example, the lexicographic heuristic (Tversky, 1969) assumes that attributes

are evaluated sequentially in the order of their subjective importance or weight ;

attributes with high subjective weight bear stronger influence on choices than

attributes with lower subjective weight. Each attribute comparison can termi-110

nate the decision process if there is a single option that is superior to all others

(for similar, see minimum difference lexicographic rule; Montgomery & Svenson,

1976).

1.2. Discriminating Between Consumer Decision Strategies

Discriminating between the various decision strategies has been a persistent115

challenge in the literature, which has hindered theoretical consensus. The chal-

lenge is due to the problem of reverse inference: different strategies can predict

similar decisions, so given a set of observed decisions how are we to infer the

specific strategy that was in use? This can be made all the more challenging

since the strategies in use depend on (typically) unobserved properties of the de-120

cision maker. The reverse inference problem afflicts many investigations into the

strategies underlying multi-attribute decisions, and is even a well-known chal-

lenge for simpler, single-attribute decisions (e.g., perceptual decision making,

Ratcliff & Smith, 2004).

A range of methods have been proposed that aim to discriminate between125

the various consumer decision strategies in particular and the reverse inference

problem more generally. These methods generally fall into one of two classes:

process-oriented and outcome-oriented methods. Process-oriented methods aim

to understand decision strategies by tracing the processes or sequence of steps

people use to acquire decision-relevant information, where the decision that130
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people ultimately make is typically of less interest; common examples include

Mouselab (Payne et al., 1988), eye tracking, Active Information Search (Englän-

der & Tyszka, 1980), and many more (e.g., Reisen et al., 2008). As noted by

others (Reisen et al., 2008), process-oriented methods provide rich information

about the search for information but are generally silent about how people inte-135

grate the information to inform their choice. For example, they can provide rich

data on the order in which decision makers investigate attributes and options

though those data are typically non-informative with respect to other questions

of strategy, like whether the attribute information was or was not compared to

aspiration levels.140

In contrast, outcome-oriented methods tend to emphasize the choices people

ultimately make and infer the most likely decision strategy on the basis of the

chosen option. The outcome-oriented approach typically includes mathematical

or structural modeling of the relationship between the inputs (composition of

the choice alternatives) and outputs (chosen options), typically with regression-145

based methods or discrete choice models (Train, 2009). As with the process-

oriented methods, the outcome-oriented approaches provide insight into some

aspects of decision strategy, including the subjective weight that was assigned

to different attributes, though are silent on others, such as the order in which

attribute information was considered.150

There have been some attempts to integrate the process- and outcome-

oriented methods, such as DecisionTracer (Riedl et al., 2008), which represent an

exciting avenue to potentially move beyond the shortcomings of either method

when considered in isolation. Nevertheless, such unified approaches are not with-

out their own shortcomings. For example, intervening on the search process (via155

process-tracing methods such as Mouselab or Active Information Search) can in-

terfere with the decision strategies used in naturalistic environments where infor-

mation is typically not concealed-until-searched, and unintrusive process-tracing

methods such as eye tracking can be prohibitive in some contexts (e.g., experi-

mental environments required to accurately track eye movements, or equipment160

cost; Riedl et al., 2008).
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Here, we investigate a novel application of an outcome-based method to

provide unique process-based insight into consumer decision strategies – Sys-

tems Factorial Technology (SFT; Townsend & Nozawa, 1995). SFT is a non-

parametric, response-time based framework that permits conclusions about the165

mental architecture of information processing systems – how people process and

integrate multiple sources of information to inform decisions; we provide further

explanation in the next section, including a classification of decision strategies

into classes of mental architectures. An advantage of SFT in this context is its

capacity to predict unique signatures in data for different mental architectures.170

This means that observing a particular signature in data provides evidence both

in favor of the observed architecture and against alternative architectures, which

in turn allows us to determine the viability of whole classes of consumer decision

strategies. With this approach, SFT has been foundational to understanding

mental architectures in various domains including perceptual identification and175

classification (Eidels et al., 2010; Fifić & Townsend, 2010), multidimensional

categorization (Fific et al., 2008; Little et al., 2011), selective attention (Chang

et al., 2016), face perception (Cheng et al., 2018), and even social phenomena

including the other race effect (Yang et al., 2018) and clinical conditions includ-

ing autism spectrum disorders (Johnson et al., 2010). For an overview of SFT180

we refer the reader to Harding et al. (2016). For a detailed background with

example applications we recommend Algom et al. (2015) or Little et al. (2017).

1.3. Consumer Decision Strategies as Mental Architectures

The strategies people use to select between multi-attribute options – whether

those options represent consumer products that vary in price and quality or non-185

descript objects that vary in shape and brightness – can be conceptualized as

mental architectures. A mental architecture is a statement about how a system

deals with multiple sources of information: how it processes each information

source, stops searching for new information, integrates information, and ulti-

mately performs an action on the basis of the information. Mental architec-190

tures are interpreted at a higher level of abstraction than the decision strategies
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introduced earlier, in the sense that multiple strategies can adhere to a single

mental architecture but no two mental architectures can describe a single de-

cision strategy. A consequence is that if a single decision strategy appears to

fall within the purview of more than one mental architecture then that strat-195

egy has not been sufficiently specified, in the sense that there is more than one

valid computational implementation of the sequence of steps that encode the

decision strategy. Throughout, we consider five mental architectures that have

been investigated in great detail in the literature (for a review of the properties

of the architectures, see Algom et al., 2015).200

When presented with options described by multiple sources of information,

the decision maker can take one of two approaches: they can process all of the

available information, or only a subset of the information, before committing to

a decision; this is known as the stopping rule. In the context of multi-attribute

and multi-alternative choice, the stopping rule could refer to partial or complete205

processing of the available (i) attribute information, or (ii) options. We refer to

the former in our explanation below and test in our experiments, though we note

the methods can also apply to the latter. If all sources of attribute information

are independently processed prior to making a decision, the stopping rule is said

to be exhaustive. This would be like ensuring that both the price and quality are210

processed to completion – say, compared to their corresponding aspiration levels

– before deciding to accept or reject an option. For example, the disjunctive

strategy states that an option is only rejected once it is determined that all of

the option’s attributes do not meet their corresponding aspiration levels. An

exhaustive stopping rule is also used in the dominance strategy (Lee, 1971)215

which proposes that an option will only be chosen if it is equal to or better

than the available alternatives across all attributes, and the simple majority

rule (Arrow, 2012) that assumes a similar approach to the dominance strategy

though ensures that a choice is always made – the option that is best across the

largest number of attributes. This classification of strategies into elements of220

mental architectures is shown as Set 3 in Table 1. We note that the classification

presented in Table 1 is merely a proposal, which is open to further debate.

9



Nevertheless, the (tentative) classification serves our aims in this article.

Similar to exhaustive stopping rules, some strategies assume that all sources

of information are used to inform a decision except that each source is not225

processed independently. Rather, the sources are integrated into a single rep-

resentation reflecting the value of an option, and the decision is then made on

the basis of the integrated value. This is known as a coactive architecture, and

it appears in some of the most commonly studied decision strategies; in Table

1 these strategies are categorized as Set 4. For example, the equal weight and230

weighted additive strategies assume that a subjective utility is assigned to each

of an option’s attributes and those attribute utilities are summed to form an

overall utility for each option. The decision maker selects the option with the

highest total utility; the individual attribute values do not influence the decision

outcome directly, only indirectly via their influence on the integrated utility of235

the option.

In contrast to exhaustive or coactive processing of all available attribute

information, people might make a decision after processing only a subset of it,

known as a self-terminating or minimum time stopping rule. A self-terminating

stopping rule is in place when a decision maker accepts or rejects an option240

once they have processed some, though not all, of the attribute information;

for example, price or quality. Self-terminating stopping rules are common to a

number of decision strategies, shown in Table 1 as Sets 1 and 2. For example, the

lexicographic heuristic only considers as many attributes as required to identify

a single option that is superior to alternatives. In a similar vein, the satisficing245

heuristic will reject an option as soon as an attribute is encountered that violates

its corresponding aspiration level.

Orthogonal to stopping rules, another key property of a mental architecture

is whether multiple sources of information are processed in serial or parallel. Se-

rial processing occurs when a decision maker sequentially processes each source250

of attribute information – one at a time. This would be like first considering

the quality (or price) of an option, perhaps comparing it to the corresponding

aspiration level or assigning a subjective utility to the attribute value, and only
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then processing the price (quality). Serial processing is a key feature of the lexi-

cographic heuristic and elimination by aspects (Tversky, 1972), where attributes255

are assessed one at a time in the order of the subjective importance (weight).

In contrast, a decision maker might process the different information sources si-

multaneously – all information at the same time, known as parallel processing.

In our consumer example, this would not require one-after-the-other processing

of the two attributes; the comparison to the aspiration levels, or assignment of260

subjective utilities, happens at the same time for both attributes.

With just a few exceptions, it is clear from Table 1 that there have been few

theoretical commitments regarding serial or parallel processing in previously

proposed decision strategies; strategies we have classified as serial or parallel

(column 2) have not been sufficiently specified in the literature to identify the265

processing style of the strategy. This places some limitations on our approach

to testing mental architectures in consumer decisions, such as the capacity to

discriminate smaller subsets of strategies (e.g., compatibility test from the con-

junctive strategy). Nevertheless, we argue that our approach to testing mental

architectures (classes of decision strategies) rather than pairs or small sets of270

specific decision strategies is potentially a new avenue for investigation in the

literature. We also argue that the current lack of theoretical commitment to

properties of the mental architectures is an opportunity: to gain greater theo-

retical insight, we ought to commit our psychological theories to sequences of

computational rules that have unambiguous interpretations. In doing so, we275

will have greater capacity to discriminate between those theories in data (for

extensive discussion of this argument, see Lewandowsky & Farrell, 2011). We

now provide an overview of SFT and the unique predictions it generates for

mental architectures.

1.4. Systems Factorial Technology And The Double Factorial Paradigm280

Here, we provide proof of concept of the capacity for SFT to provide insight

into the mental architecture underlying consumer decisions. SFT comprises a

suite of non-parametric analyses that, when combined with the double factorial
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paradigm (Townsend & Nozawa, 1995, described below), permit process-based

inferences from outcome-based response time data. SFT can address questions285

including: Do people process all available information prior to making a decision

(i.e., exhaustive processing) or a subset of information (i.e., self-terminating)?

Do people integrate disparate sources of information into a single representation

(i.e., coactive)? Are multiple sources of information processed one source at a

time (i.e., in serial) or multiple sources simultaneously (i.e., in parallel)? We290

note that whilst SFT has been extended to investigate mental architectures in

tasks involving m > 2 attributes (Yang et al., 2014), most literature to date has

focussed on the study of m = 2 sources of information, a convention we also

follow here.

We first provide an overview of the double factorial design that is critical295

to SFT followed by our modification appropriate for the study of consumer-like

choices. The double factorial design is most simply described in the context of

perceptual detection. Suppose a participant is presented with two sources of

information such as two lights, where a single light is located at the left and

the right of a display. On each trial, each source of information can have a300

target present (e.g., a light switched on) or absent (the light is switched off).

The double factorial paradigm is typically administered with one of two types

of decision rules. If the participant is instructed to indicate whether any target

is present then a self-terminating stopping rule (sometimes called an OR rule) is

an efficient strategy, since the presence of just one target is sufficient to respond305

accurately. In contrast, if the participant is instructed to indicate whether both

targets are present, then an exhaustive stopping rule (sometimes called an AND

rule) is required to accurately respond to the task. This 2 (target: present,

absent) × 2 (source: left, right) design can be thought of as the ‘first’ factorial

component of the ‘double factorial’ paradigm.310

The ‘second’ factorial component of the ‘double factorial’ paradigm corre-

sponds to a 2 × 2 manipulation embedded within the cells of the first factorial

component. This second factorial component is a manipulation of the salience

of the information presented at each source, when a target is present. In the
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perceptual detection example a high salience target might be a bright light and315

a low salience target might be a dim light, where the left and right lights can

each appear with high or low salience. These four cells of the embedded design

are, by convention, labeled by their level of salience (H=High, L=Low). Thus,

for a low salience stimulus in the first source of information and a high salience

stimulus in the second, we get a trial label of LH; the corresponding labels for320

all four cells of interest within the design are HH, HL, LH, and LL.

An effective salience manipulation is one where a high (low) salience target

speeds (slows) processing of the corresponding source of information, and has

no impact on the speed of processing for the other source of information. That

is, if the light at the left location is changed from High (H) to Low (L) salience325

then it only affects the speed of processing of the stimulus appearing at the left

location; it has no effect on the stimulus appearing at the right location. This

independent manipulation of the processing speed for each source of information

is known as selective influence and it is integral to the interpretability of the

signatures derived from SFT.330

We can test in data whether the assumption of selective influence was up-

held by examining the distribution of response times in each of the four double

target cells (HH, HL, LH, and LL). We use the survivor function, which repre-

sents the probability that an event has not occurred by time t; for a random

variable X the survivor function is SX(t) = Pr{X > t}, the complement of335

the more familiar cumulative distribution function. Thus for a particular cell

from our double factorial design, say, when the first source of information has

‘Low’ salience and the second source has ‘High’ salience, or LH, we refer to the

survivor function of the response times as SLH(t). An effective salience ma-

nipulation implies that four cells of primary interest to our design satisfy the340

ordering SHH < {SHL, SLH} < SLL. That is, decisions are fastest when both

sources of information have high salience (HH), intermediate when one source

is of high salience and the other is low salience (HL, LH), and slowest with two

low salience sources (LL).

With an effective salience manipulation in place, we use the four survivor

13



functions to generate the Survivor Interaction Contrast (SIC),

SIC(t) =
[
SLL(t)− SLH(t)

]
−
[
SHL(t)− SHH(t)

]
.

Figure 1 illustrates the SFT-generated SIC signatures corresponding to the five345

mental architectures introduced earlier (for a deeper intuition behind the shape

of SICs, we refer the reader to Townsend & Nozawa, 1995). The upper row

shows that the SIC for a coactive architecture has an early negative deflection

that is quite small followed by a later positive deflection that is considerably

larger. Parallel architectures exhibit only a negative deflections (exhaustive)350

or positive deflections (self-terminating), whereas serial architectures have both

negative followed by positive deflections of equal size (exhaustive) or no deflec-

tion from the baseline at all (self-terminating). The SIC predictions for the

different mental architectures, and as a consequence the various decision strate-

gies, are shown in the rightmost column of Table 1.355

Discriminating between serial exhaustive and coactive architectures in data

based on the SIC alone is challenging, as they share the qualitative features of

a negative deflection followed by a positive deflection from the baseline. The

issue is resolved by measuring area between the SIC(t) and baseline for all t;

that is, integrating the SIC with respect to t. Since responses time are a strictly

positive random variable, the integration of the SIC reduces to an interaction

contrast of the mean response times for each cell (Houpt et al., 2014), the Mean

Interaction Contrast (MIC),

MIC =
[
MLL −MLH

]
−

[
MHL −MHH

]
.

The MIC can discriminate between a serial exhaustive architecture (MIC = 0,

since the early negative and later positive deflections are of equal size) and

a coactive architecture (MIC > 0, since the early negative deflection is smaller

than the later positive deflection). MICs for the five architectures are illustrated

in Figure 1, and in the fourth column of Table 1.360

Our aim is to identify the MIC and SIC signatures in data from a consumer-

based SFT task. Given the classifications in Table 1, this will allow us to report
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Figure 1: Five mental architectures (rows) and their Mean Interaction Contract (MIC; left

column) and Survivor Interaction Contrast (SIC; right column) as predicted by SFT.

evidence in favor of or against different mental architectures, and as a conse-

quence decision strategies. For example, if we were to observe MICs of 0 and

SICs with early negative and later positive deflections of equal size – represent-365

ing a serial exhaustive architecture – then we can conclude that participants

made decisions in a manner that were consistent with the disjunctive strategy,

dominance strategy, and/or the simple majority decision rule, shown as Set 3

in Table 1. Critically, such a diagnosis of the architecture would allow us to

conclude that the observed decisions were not consistent with any of the other370

decision strategies.

1.5. Systems Factorial Technology In Consumer Decisions

We modified the stimulus display of the double factorial design so as to

test hypotheses about mental architectures in consumer decisions. To describe
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this modification, we begin with a description of the standard outcome-based375

method for examining consumer preferences in the applied choice literature – the

discrete choice experiment (DCE). DCEs are choice scenarios where participants

select between hypothetical products or services. DCEs can be composed of an

arbitrary number of alternatives each of which can be defined by an arbitrary

number of attributes.380

Figure 2A provides a schematic overview of the generic DCE structure: a

number of options are presented in a choice set, where each option in the set

is described along several attributes. Figure 2B provides an example of four

such attributes that might be of relevance for consumers selecting a hotel when

traveling for business: cost per night, review rating, distance to the central385

business district, and gym availability. Each option takes on a particular value

for each attribute – these are attribute levels; for example, the cost of the hotel

might be $180 or $330 per night, or the hotel may or may not have a gym. Given

this setup, DCEs ask participants to state their most-preferred option from the

set of hypothetical options. Participants complete a number of such hypothetical390

choice sets, each of which contains a different configuration of attribute levels

for each option. Through the attributes and levels structure of the choice sets

and the pattern of choices across those sets, detailed inferences can be drawn

regarding the utilities (subjective value) of the options that were most likely to

generate participants’ expressed preferences (for detailed overview, see Louviere395

et al., 2000; Train, 2009). Although DCEs and their associated analyses have

proven useful in accounting for and predicting choices, they are silent on the

decision strategies people used to arrive at their choices.

We modified the appearance of the typical DCE choice setup so as to adhere

to the requirements of the double factorial design, and accordingly the SFT400

analysis tools. As a first test, this involved the simplest possible multi-attribute

choice scenario: a single option defined by two attributes. The participant was

asked to accept or reject a single presented option according to a pair of aspira-

tion levels, one for each attribute, which were specified by the experimenter. For

example, the sample stimulus shown in Figure 2C might be accompanied with405
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 ☐ ☐ ☐ 
Attributes Hotel 1 Hotel 2 Hotel 3 
Cost/night $250 $330 $180 

Review rating 75% 89% 68% 
Distance to CBD 2km .5km 2km 
Gym available Yes Yes No 

 

(A)  Schematic discrete choice experiment

(B)  Example discrete choice experiment with hotels

(C)  Double factorial task with hotels

$250 
 

75% 
 

Figure 2: (A) Schematic discrete choice experiment (DCE) to study consumer preference,

and an example with hotel choices (B). Several options are displayed. Options are defined by

attributes, and each attribute can take on a varying number of levels. The participant’s task

is to select their most preferred option. (C) An adaptation of the DCE stimulus in (B) to the

double factorial design studied in this paper. A single option is shown that is defined by a set

of attributes and levels. The participant’s task is to indicate if they are willing to accept or

reject the option.

the aspiration levels “accept options that are cheaper than $300 and have review

scores greater than 60%”. In this case, the correct response would be to accept

the option since it met the aspiration level on both attributes. If the aspira-

tion levels had instead been described as “accept options that are cheaper than

$200 with review scores greater than 60%”, the correct response would be to410

reject the option since it did not meet the aspiration level of the price attribute.

The experimenter-specified aspiration levels can be thought of as representing

a fixed referent option such that each trial presented a novel multi-attribute
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option that was to be judged as better than the fixed multi-attribute referent,

in which case the correct response was to accept the presented option, or worse415

than the referent, and therefore to reject the presented option.

Our consumer SFT task mirrors the typical stimulus setup used in SFT-

based studies of, say, perceptual detection: each trial presents an option that is

defined by two attributes, where the decision is determined by comparing those

attributes to their aspiration levels. We note upfront that our task consider-420

ably simplifies the DCE. One important difference is a switch from preferential

choice (as in DCEs) to veridical choice (i.e., there is a correct answer, as in our

task). Our use of experimenter-specified aspiration levels introduces a level of

artificiality to this consumer context, since in naturalistic contexts consumers

determine their own aspiration levels, or might not use aspiration levels at all.425

Nevertheless, we deemed the experimental control gained through this design

choice to be a necessary starting point in providing proof-of-concept evidence

that SFT, via the double factorial design, is a promising tool to study the archi-

tecture underlying high-level cognition such as consumer decisions. We return

to the issue of experimenter- vs consumer-specified aspiration levels in the Gen-430

eral Discussion. We consider the work presented here to be a starting point

for expanding the scope of SFT for the study of the mental architectures in

consumer decisions; for example, generalization to an arbitrary number of at-

tributes (Yang et al., 2014), choice sets with more than one displayed option,

or user-specified aspiration levels.435

Here, we present two experiments that provide a starting point for inves-

tigating classes of decisions strategies that can be ruled in or ruled out given

individual participant data. Experiment 1 examined decision making strategies

when attribute information was presented in a numeric fashion (i.e., dollar val-

ues for price, % ratings for quality), which is quite common in the consumer440

literature. Experiment 2 generalized the experimental design to examine deci-

sion strategies when attribute information was presented in a symbolic manner

(i.e., dollar symbols for price, star ratings for quality), which is an increasingly

common method to convey product information in online product and service
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providers. As we show below, a benefit that emerged from presenting infor-445

mation in the symbolic format was a decrease in overall participant response

times, which we suspect was due to the simpler processing requirements when

comparing the features of the presented option to the referent option, in turn

increasing the precision of the conclusions drawn from the SFT analysis.

2. Experiment 1450

The aim of Experiment 1 was to examine the mental architecture of consumer

decisions with a SFT-based analysis of a simplified consumer choice task. At the

outset, participants were given aspiration levels in the form of a decision rule;

this was a dollar value and a quality rating to use as a ‘response threshold’.

They were asked to apply these aspiration levels to a series of decisions about455

consumer-like options, determining whether each option should be accepted

(i.e., met the aspiration levels) or rejected (i.e., did not meet one or both of the

aspiration levels).

2.1. Method

2.1.1. Participants460

Sixty four undergraduate psychology students participated in exchange for

course credit. All participants had normal or corrected-to-normal vision and

provided informed consent prior to participation.

2.1.2. Design and Materials

The experiment involved a hypothetical consumer choice scenario where par-465

ticipants were asked to review candidate hotels for an executive’s upcoming

business trip; Figure 2C provides an example of the stimulus display. The ex-

ecutive was willing to stay in any hotel that was cheaper than $500 per night

and had a review rating better than 50%; these were the experimenter-defined

aspiration levels, reflecting an AND rule in the SFT nomenclature. Participants470

were presented with a single candidate hotel at a time and were instructed to

accept any hotel that met both aspiration levels (i.e., the hotel was cheaper than
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$500 and had a rating better than 50%) and to reject all other hotels. That is,

they were to reject hotels that did not meet either aspiration level (i.e., more

expensive than $500 or poorer than 50% rating) or both criteria (i.e., more475

expensive than $500 and poorer than 50% rating).

Consistent with the structure of the double factorial paradigm, we manipu-

lated the difficulty of the hotel judgments by selectively increasing or decreasing

the numeric distance between an option’s attribute values and the aspiration

levels. This manipulation assumes that it is more challenging to discriminate480

numbers that are numerically closer to a criterion than numbers that are nu-

merically distant. This has been shown for two-digit numbers by Hinrichs et al.

(1981) and in three-digit numbers in Hinrichs et al. (1982). We grouped the nu-

meric distance manipulation into two levels that represent low and high salience,

reflecting values that exceeded the aspiration levels by a small and large mar-485

gin, respectively. The attribute values of each hotel were then composed of a

randomly sampled value from one of three distributions, separately for each at-

tribute – the low or high non-overlapping salience distributions, or a distractor

distribution. The latter was introduced to ensure that some stimuli required a

reject decision (i.e., too expensive, poor rating) to prevent automated ‘accept’490

responding in the absence of stimulus processing. Figure 3 illustrates the three

distributions of the salience manipulation, separately for both attributes. Values

for the high salience, low salience and distractor cells were randomly sampled

from normal distributions with, for the price attribute, means of $200, $400 and

$700, respectively, and standard deviation $25, and for the rating attribute,495

means of 80%, 60% and 30%, respectively, and standard deviation 2.5%. The

mean of the distractor distributions was set to the midpoint between the low

and high salience distributions yet located on the opposite side of the aspiration

level (i.e., greater than $500, poorer than 50%). The distributions ensured that

the price was always three digits and rating was always two digits.500

Factorially crossing the low salience (L), high salience (H) and distractor (D)

levels for each attribute produced a design with nine cells, which we represent

with the two letter coding system introduced earlier; the first and second letters
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Figure 3: The distributions of values for the price and rating attributes for the Accept con-

dition of the experiment. Attribute values for each hotel were randomly sampled from one

of three distributions: high salience, low salience or distractor (blue, orange and green dis-

tributions, respectively), according to the contingencies described in the main text. Density

curves show the data-generating distributions and histograms show the sampled values for a

representative participant. The vertical red line illustrates the experimenter-defined decision

criterion placed on each attribute.

correspond to the level of the price and rating attributes, respectively. Four

cells of the design are critical to our SFT analysis: the presence of two attribute505

values that met the aspiration levels (i.e., HH, HL, LH, LL), where the correct

response was to accept the hotel; these are known as double targets. As these

cells reflect the key data source for SFT we over-represented them in the design

to maximize data for analysis: 66% of all trials were from these four critical

cells. The remaining five cells comprised trials where only one of the attributes510

met its aspiration level (DL, DH, LD, HD; single targets) or neither attribute

(DD; double distractor). In these five cells the correct response was to reject

the hotel and they were evenly split across the remaining 33% of trials. The 2
3
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vs 1
3 split ensured an appropriate balance between response types throughout

the experiment (i.e., accepting or rejecting the hotel).515

We refer to the task as described thus far as the Accept condition: the AND

rule specified an aspiration level for each attribute that was required in order to

accept a hotel, while all other hotels (i.e., single targets, double distractors) were

to be rejected. We also tested a Reject condition where the AND rule specified

an aspiration level for each attribute that was required in order to reject a hotel,520

while all other hotels were to be accepted. All details of the Reject condition

were as described above except for the following: the instructions were described

as an executive that was not willing to stay in any hotel that was more expensive

than $500 per night and had a review rating less than 50%, and for the price

and rating attributes the H, L and D distributions had means of $800, $600 and525

$300, and 20%, 40% and 70%, respectively. The focus of the task – the Accept

or Reject condition – was manipulated between subjects in a pseudo-random

manner to ensure equal sample sizes.

2.1.3. Procedure

The participant was introduced to a choice task that involved making de-530

cisions about hotels. They received instructions that described the aspiration

levels they were to use to guide their decisions, which differed depending on the

participant’s focus condition (Accept, Reject). The rule was described at the

start of the task and provided as a reminder during the rest breaks following

each block.535

The trial timeline was as follows. A centered fixation cross was shown for 1

second, which was then replaced with the hotel stimulus for the trial. Partic-

ipants were free to respond at any time post-stimulus onset. Once a response

was registered, the stimulus was removed from the display, and then the fixation

cross for the next trial was shown. The stimulus timed out after a display time540

of 4.5 seconds, after which it was removed from the display and no response was

recorded for the trial. If the participant did not respond before the trial time

out, or if they responded within 300ms of stimulus onset, they received an addi-
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tional 2 second penalty prior to commencement of the next trial. Participants

completed a practice block of 30 trials with correct/error feedback to familiarize545

them with the task. The main task consisted of 4 blocks of 210 trials for a total

of 840 trials. Correct/error feedback was not provided in the main task.

We counterbalanced across participants the display order of the two at-

tributes (price above rating as in Figure 2C, or rating above price; both at-

tributes were always presented simultaneously), and whether the left or right550

hand (‘Z’ or ‘/’ keys) corresponded to accept or reject responses. The task

was presented in Expyriment (version 0.90), a Python library for cognitive

experiments (Krause & Lindemann, 2014), on Windows 7 PCs with 23-inch

monitors and a 60Hz refresh rate. The stimuli were presented in white text on

a black background at approximately 35mm in width and height and subtended555

a visual angle of 2.7° at a viewing distance of 75cm.

2.2. Results

We took a stepped analysis approach to ensure that the data from our

consumer-like version of the double factorial task met the assumptions of SFT.

We first screened for particularly fast or slow responses followed by an assess-560

ment of accuracy across key cells of the design, and then assessed the selective

influence assumption of the salience manipulations; the selective influence as-

sumption, critical to SFT, states that correct responses to high salience stimuli

must be faster than correct responses to low salience stimuli. We assessed the

number of participants who met a standard of performance at each step of the565

analysis, where participants who fell below this standard (e.g., low accuracy) or

violated selective influence were excluded prior to commencing the next step of

the analysis.

2.2.1. Fast, Slow, And Inaccurate Responses

We removed all trials with no response (.5% of trials), responses faster than570

300ms on the assumption they were fast guesses (.1% of trials), and responses

slower than the .95 quantile of each individual’s response time distribution to
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reduce the potential influence of very slow responses in the tail of the distribution

(5% of trials, by definition). We then classified each of the nine cells of the design

into four categories so as to assess mean accuracy: double targets where both575

the price and rating met the aspiration levels; price single target where the price

met the aspiration level but rating did not; rating single target where the rating

met the aspiration level but price did not; and double distractors where neither

the price or rating met the aspiration level.

Figure 4 displays response accuracy across the four categories separately for580

each participant. Around one third of participants had quite low accuracy, hov-

ering around 60-70% for the two single target categories. We used a performance

standard of at least 80% accuracy in the least-accurate of the four categories.

This criterion, marked by a vertical line in Figure 4, led to the removal of 27 of

the 64 participants (42%). Although this number may seem high relative to stan-585

dard cognitive psychology experiments, we believe it is warranted in this context

given it is the first application of SFT to decisions in a consumer-like domain.

With this strict criterion we ensured that we worked with the best data so as to

provide the best chance for a successful proof-of-concept test of the approach;

phrased differently, if SFT does not provide useful insights with this restricted590

data set, it is highly unlikely to provide useful insights when considering a more

inclusive data set. Once we confirm that SFT is viable for consumer-like de-

cisions, we can develop the methodology so as to improve performance across

participants, and hence obtain more inclusive data sets for analysis. At a prac-

tical level, maintaining participants who performed with relatively low accuracy595

would likely introduce two potential problems, since SFT operates on the dis-

tribution of correct response times: there would be insufficient data to analyze

distributional properties, and there would be a greater chance of including par-

ticipants who did not perform the task as instructed. Interestingly, significantly

more participants were excluded from the Reject condition (21) than the Accept600

condition (6), χ2(1) = 8.3, p = .004. This suggests that an AND rule in the

Reject-focused condition was more challenging for participants to implement

than an AND rule in the Accept-focused condition, possibly because it conflicts
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with the natural decision rule people use when considering consumer options –

deciding which product to buy rather than rejecting the potentially numerous605

options that will be rejected.

Participants

0.0
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1.0
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DoubleTarget
PriceSingleTarget
RatingSingleTarget
DoubleDistractor

Figure 4: Accuracy across the four categories – double target, single target price, single target

rating and double distractor – separately for the 64 participants in Experiment 1, sorted by

minimum accuracy across the four trial types. The vertical red line indicates the 80% criterion

used as the performance standard.

2.2.2. Selective Influence

We next assessed whether our salience manipulation produced data consis-

tent with the assumption of selective influence. Selective influence was tested by

comparing individual participant response time distributions from the four cells610

of interest (HH, HL, LH, LL) with one-sided Kolmogorov-Smirnov tests (Houpt

& Townsend, 2010), assuming α = 0.15 (Johnson et al., 2010). A violation of

selective influence was considered to be any statistically significant ordering of

response time distributions such that SLL < {SHL, SLH} < SHH ; that is, where

the LL cell was faster than either HL or LH, and/or that HL or LH were faster615

than HH. There were 7 significant violations of selective influence; these par-

ticipants were not analyzed further. Visual inspection of the survivor functions

indicated an additional 12 participants with incorrect ordering of the response
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time distributions in at least one component of the distribution. It is likely that

these orderings were not so extreme as to be detected by the significance test,620

though we nevertheless removed these participants from further analysis; their

survivor functions are displayed in supplementary material.

Figure 5 shows the response time survivor functions from the four critical

cells for those participants that passed the criteria of no statistically significant

violations as well as a visual inspection of the response time distribution order-625

ing. Of these 18 participants (48.6% of the accurate responders sub-sample), two

showed statistically significant ordering of all response time distributions such

that SHH < {SHL, SLH} < SLL; that is, the HH cell was faster than LH/HL,

and LH/HL were faster than LL. The remaining participants showed a subset

of the significant effects while all demonstrated the expected visual ordering of630

functions. Figure 5 makes it clear that there was considerable across-participant

variability in the response patterns. For example, some participants showed very

strong differentiation (i.e., HH was faster than HL and LH which in turn were

faster than LL; e.g., participants 12 and 53), while others showed very little

differentiation between the four cells across all components of the distribution635

(e.g., participant 19).

2.3. Survivor Interaction Contrast

Figure 6 shows the SIC curves corresponding to the survivor functions in

Figure 5. We assessed deviations from 0 in the SICs with the D statistic (Houpt

& Townsend, 2010). Following Fox & Houpt (2016), we assumed a lenient640

significance criterion (α = 0.33) since a conservative p-value can bias the test

toward flat SICs (i.e., SIC(t) = 0 for all t).

As shown in Figure 6 the majority of participants made decisions consistent

with a serial self-terminating architecture (10 of 18, flat SIC with no statis-

tically significant deviation from baseline). The remaining participants made645

decisions consistent with a parallel processing architecture, with an even split

between a self-terminating stopping rule (4 of 18, positive-only statistically sig-

nificant deflection in SIC) and an exhaustive stopping rule (4 of 18, negative-
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Figure 5: Response time survivor functions for participants included in the primary anal-

ysis of Experiment 1. Survivor functions are shown separately for each of the four double

target cells (HH, HL, LH, LL). Panels are marked with the results of individual-participant

Kolmogorov-Smirnov tests between cumulative distribution functions (complement of the sur-

vivor function). p-value indicators for the effects are shown in superscript (** p < 0.05, * p <

.15). Non-significant effects are not shown.
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Figure 6: SIC curves for participants included in the primary analysis of Experiment 1. Panels

are marked up with the results of individual-participant D statistic tests. p-value indicators

for the effects are shown in superscript (** p < 0.05, *p < .33).

only statistically significant deflection in SIC). We also note that the Accept-

and Reject-focused conditions were exactly even split across the three architec-650

tures (i.e., 5:2:2 vs 5:2:2). Table 2 summarizes the SIC results in terms of the
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sets of decision strategies outlined in Table 1, which we discuss in greater detail

below.

Table 2: The decision strategies of each participant, as determined by the shape of the SIC

curves, in Experiment 1. MIC predictions are omitted as they were not pertinent to the results

of Experiment 1. Decision strategy sets are as described in Table 1.

Participant(s) SIC Architecture Decision Strategies

03, 06, 19, 21, 24, 27, 34, 38, 53, 56 flat Serial Self-terminating Sets 1 and 2

- negative → positive Serial Exhaustive Set 3

05, 15, 58, 62 positive Parallel Self-terminating Set 2

12, 31, 41, 46 negative Parallel Exhaustive Set 3

- negative → positive Coactive Set 4

An interesting result from Experiment 1 is that we did not observe any SICs

consistent with the remaining two mental architectures considered in SFT: serial655

exhaustive and coactive. This is convenient from an analysis perspective because

the latter two architectures cannot be unambiguously discriminated on the basis

of their predicted negative-then-positive SIC; one must analyze the MIC, which

has a different prediction for the two architectures, to discriminate them. Since

an analysis of participant MICs would not provide new evidence, we do not660

report it here.

2.4. Discussion

There was considerable variability in the mental architectures that were most

consistent with participant responses, leading to a reasonably wide range of

possible decision strategies that participants might have used in our consumer-665

based SFT task (Table 2). Nevertheless, there were some commonalities that

allow for interesting conclusions.

2.4.1. Decision Strategy

The decisions of many participants (78%, 14 of 18) were consistent with

a self-terminating stopping rule. For the majority of this subset (10 of 14),670

product attribute information was processed in serial; the hotel’s price was pro-

cessed first and only then was the quality considered, or the reverse order –
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quality was processed first and then price. Such a mental architecture is consis-

tent with well-studied strategies that assume a sequential processing approach

where the participant is willing to commit to a decision before all available at-675

tribute information has been processed, including elimination by aspects and

the lexicographic heuristic (Set 1, Table 1). These participants’ data were also

consistent with decision strategies that do not specify whether processing occurs

in serial or parallel (Set 2, Table 1), as are the remaining minority of the subset

of participants who used a self-terminating stopping rule (4 of 14; with evidence680

for a parallel processing architecture). These strategies include the satisficing

heuristic, compatibility test and the conjunctive strategy. A minority of par-

ticipants (4 of 18) used a parallel exhaustive architecture, consistent with the

simple majority rule, and the dominance and disjunctive strategies.

It is interesting that most participants made decisions consistent with a self-685

terminating stopping rule given that the nature of the decision task was such

that both pieces of attribute information (price and quality) were necessary to

provide a correct response to double targets (i.e., trials where both attributes

met their aspiration levels). Intuitively, one might expect the AND rule that

participants were instructed to use would most naturally map to coactive or690

exhaustive processing architectures, rather than a self-terminating rule. One

possibility is that the simplified and low-stakes nature of the decision task al-

lowed participants to engage in heuristic-based minimal processing (such as a

self-terminating stopping rule) with minimal consequences on decision outcomes

(Hoyer, 1984; Wright, 1975). We return to the point of simplifying decision695

strategies in the General Discussion.

One of the strongest findings was that no participants made decisions con-

sistent with a coactive decision architecture. Given the strategy classification

in Table 1, this allows us to exclude as candidate explanations a complete set

of decision strategies that includes some of the simpler heuristics, such as the700

frequency of good and/or bad features and the majority of confirming dimen-

sions heuristic. It also allows us to exclude more detailed coactive strategies

such as the equal weights heuristic and its generalization, the weighted additive
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rule. The latter two strategies have been extensively studied in the literature

(e.g., Carpenter et al., 2016; Riedl et al., 2008; Van de Calseyde et al., 2014),705

so our SFT-based classification that allows us to exclude this class of strategies

as potential explanations of decision behavior in this context is quite powerful.

2.4.2. Participant Performance

Our stepped analysis procedure led to the removal of more participants than

is typical in psychological studies. Although a small proportion of participants710

may not have sufficiently engaged with the task, as is possible in any psycholog-

ical experiment, the majority of participants reported that they understood the

goal of the task and attempted to follow the task instructions. We suggest that

one possible cause of the low accuracy rates that led to the exclusion of approx-

imately 1/3 of the sample could be the result of some participants erroneously715

applying a disjunctive choice rule instead of the instructed conjunctive choice

rule. In the Accept-focused condition, such an approach would reject a hotel

when the price and quality both failed to meet the aspiration levels (disjunc-

tive), as opposed to when just one attribute did not meet its aspiration level; the

reverse holds for the Reject-focused condition. The outcome of this effect can720

be seen in Figure 4: some participants had low accuracy in price single target

or rating single target trials, or both, but still performed with high accuracy on

the double distractor trials.

Another aspect of the design that may have contributed to the relatively

high exclusion rate is that the salience manipulation had quite a small effect,725

in the sense that there was little differentiation between the response time dis-

tributions across the four key cells of the double factorial design. The effect

of a weak salience manipulation is such that it becomes relatively easy to ob-

serve violations of selective influence, as even small fluctuations in the response

times of a few trials can lead to an incorrect ordering between two distribu-730

tions. In addition, the numeric presentation of attribute information may have

induced a mixture of cognitive processes in transforming the presented digits to

internal magnitudes, for subsequent comparison to the aspiration levels. This
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might have occured as a holistic process when comparing two digit values to an

internal referent (Dehaene et al., 1990; Hinrichs et al., 1981; Zhang & Wang,735

2005), like comparing the hotel’s two-digit quality rating to its aspiration level.

In contrast, values represented with three or more digits tend to be processed

in a stepped manner, sequentially from most to least significant digit (Hinrichs

et al., 1982; Poltrock & Schwartz, 1984); this process might have been used in

comparing the hotel’s three-digit price to its aspiration level. This potential740

convolution of processes (holistic and stepped) to represent the two attribute

components of the stimulus may have introduced complexity to the response

time distributions, shrouding the effect of the critical salience manipulation.

3. Experiment 2

In Experiment 2 we aimed to address the issues of a weak salience manip-745

ulation and differential stimulus representation processes that may have con-

tributed to participant performance in Experiment 1. We investigated this aim

by testing whether the decision strategies observed in Experiment 1 were driven

by the underlying structure of the decision task or the way in which product

information was presented to the decision maker, by manipulating the mode750

of information presentation. In Experiment 1, attribute information was pre-

sented as a text-based description – for example, a hotel might cost $432 with

a 67% quality rating. Although this is the status quo presentation mode for

applied DCE decision research (e.g., Louviere et al., 2000, 2015), it differs to a

rapidly growing presentation mode in online purchasing contexts – perceptual755

or symbolic attribute information. For example, yelp presents price and qual-

ity ratings for restaurants as dollar signs and stars, respectively; booking.com

makes use of star ratings for all accommodation offerings; and insurance com-

parison sites such as iSelect and CompareTheMarket present information as a

mixture of text, stars, and tick boxes. An underlying motivation of symbolic760

presentation modes is to allow the user a means to rapidly gain an impression of

products in isolation and allow for simpler comparison across product offerings.
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In Experiment 2, we therefore used the same underlying task structure as

in Experiment 1, including the use of experimenter-specified aspiration levels,

except that attribute information was presented symbolically – for example, a765

hotel might have a price represented with 3 (from a maximum of 5) dollar signs

and a quality rating of 4 (of 5) stars. This manipulation of presentation mode

allowed us to investigate whether the manner in which product information was

delivered to the decision maker influenced the way they processed that product

information, by comparing results between Experiments 1 and 2. It also draws770

a closer to the existing literature in perceptual processing that has been studied

with SFT (e.g., Fific et al., 2008, 2010; Little et al., 2011).

3.1. Method

3.1.1. Participants

Thirty-four undergraduate psychology students participated in exchange for775

course credit. All participants had normal or corrected-to-normal vision and

provided informed consent prior to participation.

3.1.2. Design and Materials

The design and materials of Experiment 2 were identical to the hypothetical

consumer choice scenario in Experiment 1 except where noted. The primary dif-780

ference was that attribute information was presented as horizontally sequenced

perceptual symbols rather than digits: hotel prices were displayed as a number

of dollar signs from a total of five – a cheap hotel as $ through to an expensive

hotel as $$$$$ – and hotel quality was displayed as a 5 star rating system –

a poor rating as ? through to an excellent rating as ?????. In the Accept-785

focused condition, the instructions stated the executive was willing to stay in

any hotel that was cheaper than $$$ and had a rating better than ???; these
were the experimenter-defined aspiration levels, again reflecting an AND deci-

sion rule. In the Reject-focused condition, the executive was not willing to stay

in any hotel that was more expensive than $$$ and had a rating less than ???.790
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The Accept- and Reject-focused instructions were again manipulation between

subjects.

The salience of the hotel price and quality attributes was manipulated by

increasing or decreasing the number of symbols for each attribute relative to the

aspiration levels; this manipulation is similar in spirit to the numeric distance795

effect underlying the salience manipulation in Experiment 1. Attribute values

that exceeded the aspiration levels by one symbol were defined as low salience,

and by two symbols as high salience. Table 3 outlines this manipulation in terms

of the numbers of each attribute symbol for each salience level, separately for

the Accept- and Reject-focused conditions, all of which were judged relative to800

the aspiration levels: $$$ and ???.

We manipulated within subjects the symbolic display across two levels, in-

tended to represent different formats that consumers may come across when

making online purchase decisions. The display modes differed with respect to

whether the dollar signs and ratings were shown in a relative sense (i.e., in the805

context of the full range of their scale, as a ‘score’ out of the maximum possible

score) or an absolute sense (with no reference to the range of the scale). In the

Relative condition, the rating stars were shown in bright yellow, rgb(254, 233, 0),

and the dollar signs in bright green, rgb(24, 255, 0), with the remaining (unfilled)

stars or dollar signs shown in gray, rgb(127, 127, 127). For example, if a hotel810

had 4 stars (in yellow) and 2 dollar signs (in green) it would be shown alongside

1 additional gray star and 3 additional gray dollar signs. In the Absolute con-

dition, price and rating symbols were shown in the same colors as the Relative

condition but the grayed (unused) symbols were not shown. In both conditions,

stimuli appeared on a black background.815

In both display conditions there were placeholders for 5 stars and 5 dollar

signs that were horizontally and vertically centered in the display; the placehold-

ers were gray in the relative condition and invisible in the absolute condition.

Trials with fewer than 5 stars/dollar signs were filled from the leftmost place-

holder toward the right, giving the display a ‘left-aligned’ appearance. This820

display setup mirrors the way symbolic attribute information is typically en-
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Table 3: The high, low and distractor levels of the salience manipulation of the price and

quality attributes in Experiment 2. Salience levels are shown as symbolic stimuli, similar

to their presentation in the experiment, for the Accept-focused (upper) and Reject-focused

(lower) conditions.

Accept

Price High Low Distractor

Quality

High
$

?????
$$

?????
$$$$

?????

Low
$

????

$$

????

$$$$

????

Distractor
$

??
$$

??
$$$$

??

Reject

Price High Low Distractor

Quality

High
$$$$$

?

$$$$

?

$$

?

Low
$$$$$

??

$$$$

??

$$

??

Distractor
$$$$$

????
$$$$

????
$$

????

countered online, and also facilitates rapid processing of the stimulus via a

reduction of information: participants knew they could always begin viewing

from one position (the leftmost placeholder).

3.1.3. Procedure825

The procedure closely followed Experiment 1 in terms of the instructions

(with minor adjustment to account for the symbolic stimulus presentation),

35



trial timeline, and counterbalancing display order of the two attributes (price

above rating, or rating above price). The main task consisted of 2 blocks of 210

trials in the Relative display condition and 2 blocks of 210 trials in the Absolute830

display condition, with order of the two display types counterbalanced across

participants: Relative blocks first and Absolute blocks second, or the reverse.

Participants completed two 30-trial practice blocks with correct/error feedback:

one before each of the Relative and Absolute conditions, to familiarize them

with the different stimulus appearance in the two conditions. Participants did835

not receive correct/error feedback in the main task.

3.2. Results

We followed the same stepped analysis approach as Experiment 1 with the

addition that all analyses were conducted separately for the Relative and Abso-

lute display conditions.840

3.2.1. Fast, Slow, And Inaccurate Responses

We removed all trials with no response (.2% of trials), responses faster than

300ms (1% of trials), and responses slower than the .95 quantile of each individ-

ual’s response time distribution. Figure 7 shows that response accuracy across

the four categories – double target, price single target, rating single target, dou-845

ble distractor – was comparable to Experiment 1: 19 and 17 participants met

the 80% threshold for the Absolute (56% of participants) and Relative condition

(50%), respectively; 15 participants (44%) met the threshold in both conditions.

Despite the similarity across experiments in the proportion of participants who

met the accuracy threshold, of the participants that exceeded the threshold850

there appeared to be a more rapid rise toward ceiling performance across all 4

categories in Experiment 2, particularly in the Absolute condition.

3.2.2. Selective Influence

Figure 8 shows the response time survivor functions for the Absolute and

Relative conditions. There were fewer statistically significant violations of the855

36



Participants

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

Absolute

80% cutoff
DoubleTarget
PriceSingleTarget
RatingSingleTarget
DoubleDistractor

Participants

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Relative

80% cutoff
DoubleTarget
PriceSingleTarget
RatingSingleTarget
DoubleDistractor

Figure 7: Accuracy across four trial types – double target, price single target, rating single

target and double distractor – separately for the 34 participants in Experiment 2, split by

the two display conditions (Absolute in the upper panel, Relative in the lower panel). The

vertical red line indicates the 80% criterion used as the performance standard.

expected ordering of response time survivor functions in Experiment 2: 4 par-

ticipants in the Absolute condition and 1 participant in the Relative condition.

Nevertheless, visual inspection indicated an additional 3 participants in the Ab-

solute condition and 7 in the Relative condition with incorrect ordering of the

response time distributions in at least one component of their distribution. As860

in Experiment 1, participants who did not show the expected ordering of the

HH, HL, LH and LL cells were removed from further analysis; their survivor
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functions are shown in the supplementary material. Of the participants that

remained, the effect of the salience manipulation – in terms of the visual differ-

entiation between response time distributions of the four cells – appeared to be865

larger in Experiment 2 than in Experiment 1 (compare Figure 8 with Figure 5).

3.2.3. Survivor Interaction Contrast

Figure 9 shows the SIC curves corresponding to the survivor functions shown

in Figure 8. Unlike Experiment 1, there was an approximately even split be-

tween serial self-terminating (flat SIC) and parallel self-terminating (positive870

SIC) architectures, with just a couple of participants characterized as a parallel

exhaustive architecture (negative SIC), when considered across the two display

conditions. This pattern differs to Experiment 1, where there were more than

twice as many serial vs. parallel self-terminating architectures. The difference

across experiments appears to have been driven by the Relative display con-875

dition: slightly more parallel than serial processing architectures, whereas the

distribution of the two architectures in the Absolute condition is not too dissim-

ilar to that observed in Experiment 1. As in Experiment 1, we did not observe

any data consistent with serial exhaustive or coactive architectures. Table 4

summarizes the SIC results into the sets of decision strategies outlined in Table880

1.

Table 4: The decision strategies of each participant, as determined by the shape of the SIC

curves, separately for the Absolute and Relative display modes in Experiment 2. MIC predic-

tions are omitted as they were not pertinent to the results of Experiment 2. Decision strategy

sets are as described in Table 1.

Display Mode SIC Architecture Decision Strategies

Absolute Relative

05, 09, 10, 11, 15, 18 04, 05, 09, 15 flat Serial Self-terminating Sets 1 and 2

- - negative → positive Serial Exhaustive Set 3

03, 13, 29, 30 11, 14, 21, 22, 29 positive Parallel Self-terminating Set 2

06, 22 - negative Parallel Exhaustive Set 3

- - negative → positive Coactive Set 4

38



0.5 1.0

0.00

0.25

0.50

0.75

1.00

S(
t)

HH < LL**
HL < LL**
LH < LL**

03

0.4 0.6 0.8

HH < LL**
HH < HL**
HH < LH**
HL < LL**
LH < LL*

05

0.5 1.0 1.5

HH < LL**
HH < HL*
HH < LH**
HL < LL**

06

0.4 0.6 0.8

HH < LL**
LH < LL*

09

1.0 2.0

0.00

0.25

0.50

0.75

1.00

S(
t)

HH < LL**
HH < HL**
HL < LL*
LH < LL**

10

0.4 0.6 0.8

HH < LL**
HH < HL**
HH < LH*
HL < LL*
LH < LL**

11

0.5 1.0 1.5

HH < LL**
HH < HL*
HH < LH*
HL < LL*
LH < LL**

13

0.5 1.0

HH < LL**

15

0.5 1.0 1.5
RT (seconds)

0.00

0.25

0.50

0.75

1.00

S(
t)

HH < LL**
HH < HL*
HH < LH*
HL < LL*

18

0.5 1.0
RT (seconds)

HH < LL**
HH < HL**
HH < LH**
LH < LL**

22

0.4 0.6 0.8
RT (seconds)

HH < LL**
HL < LL**
LH < LL**

29

0.5 1.0
RT (seconds)

HH < LL**
HL < LL**
LH < LL*

30

Absolute

0.5 0.8 1.0

0.00

0.25

0.50

0.75

1.00

S(
t)

HH < LL**
HH < HL**
HH < LH*
LH < LL**

04

0.6 0.8 1.0

HH < LL**
HH < LH*
HL < LL**

05

0.5 1.0 1.5

HH < LL**
HH < LH*

09

0.5 1.0

HH < LL**
HH < HL**
HH < LH*
HL < LL**
LH < LL**

11

0.5 1.0 1.5 2.0

0.00

0.25

0.50

0.75

1.00

S(
t)

HH < LL**
HL < LL**
LH < LL**

14

0.5 1.0 1.5
RT (seconds)

HH < LL*
HH < HL*

15

0.4 0.6 0.8 1.0
RT (seconds)

HH < LL**
LH < LL*

21

0.4 0.6 0.8 1.0
RT (seconds)

HH < LL**
HH < LH*
HL < LL**
LH < LL**

22

0.5 0.8 1.0 1.2
RT (seconds)

0.00

0.25

0.50

0.75

1.00

S(
t)

HH < LL**
HH < LH**
HL < LL**
LH < LL**

29

Relative

Survivor function
for Salience levels

HH
HL
LH
LL

Figure 8: Response time survivor functions for the participants included in the primary anal-

ysis of the Absolute (upper) and Relative (lower) display conditions of Experiment 2. All

other details are as described in Figure 5.
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Figure 9: SIC curves for participants included in the primary analysis of Experiment 2,

separately for the Absolute (upper panels) and Relative (lower panels) display conditions. All

other details are as described in Figure 6.
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3.3. Discussion

As in Experiment 1, the vast majority of participants (90%, 19 of 21) used

a self-terminating stopping rule (Sets 1 & 2 from Table 1), consistent with

simpler rule-based strategies such as elimination by aspects, the lexicographic885

heuristic and the satisficing heuristic. Interestingly, the majority of this subset

of participants processed attribute information in serial when it was presented

in an Absolute manner – that is, star or price rating shown without reference to

its scale – but in parallel when it was presented relative to the maximum score

possible on each attribute scale.890

The shift toward more parallel processing in Experiment 2 might be due to

the simplification of the stimulus display relative to the numerical representation

used in Experiment 1. Indeed, the symbolically presented attribute information

of Experiment 2 appeared to more strongly differentiate processing than numer-

ically presented attribute information, as seen in the separation of the response895

time distributions across key cells of the design (compare Figure 8 with Figure

5). One interpretation of this result is that the manipulation of high and low

salience attribute information, critical to SFT, was indeed more visually salient

when represented symbolically (as a smaller or larger sequence of objects on

screen) than when represented by digit value (where the same number of digits900

was always present).

The symbolic representation might also have allowed for different processing

strategies. For example, the attribute information might be interpreted simi-

larly to a perceptual stimulus – like two lines, representing price and quality –

from which a length judgment can be made. It is possible that such a length-905

judgment approach was easier to apply with the added context of the maximum

score possible on each attribute scale (Relative display condition), though this

is speculative. With such a strategy, it is plausible that a greater number of

participants recruited the more efficient parallel processing architecture in the

symbolic task compared to less efficient serial processing in the numerical task.910

One might argue that such symbolic displays no longer represent ‘consumer’-

style decisions. We do not believe this is necessarily the case. Consumers often
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encounter symbolically represented information in, for example, online purchase

contexts. We are also not the first to represent preferential choice stimuli in sym-

bolic displays; for example, others have investigated decision processes through915

the use of pie charts that represent the tradeoff between option value and risk

(e.g., Guo et al., 2017; Ordonez & Benson III, 1997), visual counters to repre-

sent probabilities or outcome values (e.g., Dambacher et al., 2016), or even bar

charts in personnel selection scenarios (e.g., Tversky, 1969).

As in Experiment 1, we observed no evidence for coactive architectures,920

again allowing us to rule out strategies such as the weighted additive rule. Unlike

Experiment 1, however, in Experiment 2 we also observed no evidence (Relative)

or only a small minority of participants (2 of 10, Absolute) using an exhaustive

stopping rule, suggesting this form of decision rule was particularly unlikely to

be used to process the symbolic display that was manipulated in Experiment 2.925

This allows us to effectively rule out additional decision strategies as potential

explanations of performance: the disjunctive and dominance strategies, and the

simple majority rule (Table 1).

4. General Discussion

We have provided proof-of-concept evidence for the utility of a new approach930

to discriminate between cognitive strategies in consumer decisions. Over decades

of research, the consumer decision literature has used a range of techniques in

an attempt to uncover the cognitive processes involved in searching for relevant

information, deciding when enough information has been evaluated, and ulti-

mately making a choice. Traditionally, these methods have tended to probe one935

component of the decision process more heavily than others: most commonly,

focused on the acquisition of information or the ultimate product choice. Here,

we investigated whether a suite of analysis tools that can address both com-

ponents, and has proven insightful in the context of multi-attribute perceptual

detection and classification – known as Systems Factorial Technology (SFT;940

Townsend & Nozawa, 1995) – might also provide unique insight into consumer

42



decision strategies. Across two experiments, we found there is potential for the

use of SFT in understanding decision strategies in the consumer domain. In the

decision contexts we studied, there was converging evidence across both experi-

ments to ‘rule in’ classes of decision strategies that involve sequential, rule-based945

processing, such as the lexicographic heuristic and elimination by aspects. Both

experiments also allowed us to ‘rule out’ classes of strategies that summate all

available product information prior to processing the set of available options,

such as the weighted additive model. We discuss these issues in detail below,

along with some limitations to the SFT approach.950

A major benefit of an SFT application to the consumer choice context is the

ability to reduce the large set of candidate decision strategies to a smaller set

of higher-level mental architectures. This dimension reduction in turn permits

us to simultaneously test the plausibility of a large number of decision strate-

gies in a single experimental paradigm, such that we can now investigate the955

mental architectures in use across different contexts. With this approach, find-

ing evidence in favor of a particular mental architecture allows a collection of

strategies defined by a few common elements to be ruled feasible in the investi-

gated context, and failing to find evidence for other mental architectures allows

a different collection of strategies to be ruled infeasible in that context.960

In the decision tasks we investigated, involving a sequence of independently

presented two-attribute products that were each compared to a fixed referent,

we observed consistent evidence for mental architectures with self-terminating

stopping rules. The ‘stopping rule’ addresses the psychological question: when

have I seen enough information to make a decision? A self-terminating rule sug-965

gests a decision is made as soon as a minimally sufficient amount of information

has been processed. This differs to an exhaustive rule where a decision is only

made once all available information has been processed, which might be consid-

ered a more comprehensive decision style in the context we investigated. The

widespread use of the self-terminating stopping rule was interesting in our con-970

text because participants were explicitly instructed to use experimenter-defined

aspiration levels that required the use of information from both attributes to
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specify the appropriate response. We suggest that the observation of a self-

terminating rules, consistent with rule-based heuristic strategies, might be the

result of an effort-minimization approach to the task: from the participant’s975

perspective, achieving a sufficient level of accuracy with the least effort (for a

similar explanation in the context of perceptual decision making, see Hawkins

et al., 2012).

Such an effort-minimization approach may have been a consequence of mak-

ing repeated low stakes consumer decisions, though it might also be an adaptive980

strategy in certain real-life situations. For example, in online and real-life su-

permarket shopping, we make repeated product choices, most of which are low

stakes (e.g., selecting potato chip brand A or B typically has little consequence).

In those cases, particular products might be selected on the basis of their most

salient features rather than all available information (e.g., Benn et al., 2015).985

This is not necessarily a negative feature. It might be taken as a demonstra-

tion that people will adapt their cognitive strategies to the contexts they find

themselves in. In our experiments, considering the decision accuracy across all

cells of the double factorial paradigm and the SFT classification to mental ar-

chitectures, the most plausible task strategy appears to be one of responding990

on the basis of just one attribute at a time (price, or quality; self-terminating

rule) and occasionally switching the focal attribute across trials. This process

would give rise to the pattern of accuracy observed in Figures 4 and 7; a similar

explanation was covered in the Discussion of Experiment 1. It would be inter-

esting to test whether incorporating a performance-contingent reward structure995

in the same decision context might push people to adopt a more demanding

exhaustive strategy.

Although it appears that people used a common stopping rule across exper-

iments, we found evidence that the way that product information is presented

can influence how that decision-relevant information is processed. In particu-1000

lar, we found stronger evidence for serial processing when attribute informa-

tion was presented numerically yet parallel processing when it was presented

symbolically; response times were also considerably faster for the symbolically
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presented information. One implication of this result is that the proficiency of

decision making in situations involving time constraints might be facilitated by1005

symbolic information presentation, which might promote more efficient paral-

lel processing architectures without impacting the “correctness” of the choices

made. Furthermore, a natural extension of the SFT consumer decision task is

the presentation of attribute information in a mixed mode. This follows from a

common trend seen in online shopping where the price of a product is presented1010

as a precise numeric value while the quality is presented as a star rating system

(e.g., Amazon). An investigation of the processing architecture and stopping

rules in play when dealing with this kind of context switching within a single

choice could be beneficial to the companies that regularly present information

in this way.1015

One shortcoming of the tasks we developed is that the preferential choice

process typically involved in consumer contexts was reduced to a veridical choice

process: the aspiration levels were defined by the experimenter (not the decision

maker), which meant each trial had an objectively ‘correct’ choice. Of course, in

most consumer contexts the individual sets their own aspiration levels based on1020

the collection of personal experiences they bring to each decision scenario. We

deemed the reduction from a preferential to veridical choice process as necessary

to provide proof-of-concept testing of the possibilities of SFT in a consumer do-

main. Nevertheless, we suspect that this reduction might have at least partially

contributed to our high participant exclusion rates: in our tasks there were1025

clearly defined correct responses, and a substantial proportion of participants

were removed on the basis of low accuracy. In preferential choice there are no

‘correct’ choices, and as such the issue of high exclusion rates based on response

accuracy is no longer relevant.

Given the emerging evidence we present here, we suggest that future appli-1030

cations of SFT to consumer decisions take more flexible approaches. One such

extension might be through a two-phase paradigm. Phase 1 might be a typical

free-choice DCE scenario, used to identify individual participant aspiration lev-

els. In Phase 2 we can specify low and high salience attribute values relative to
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each individual’s aspiration levels identified in Phase 1, after which the product1035

options could be presented in much the same way as the task we developed here.

Although this approach allows the participant to determine their own aspira-

tion levels, it requires the assumption that those aspiration levels are stationary

across phases of the task.

Yet another approach might be to present product information across a con-1040

siderable range of attribute levels, in a similar format to Experiment 1, allowing

the participant to determine their own aspiration levels on acceptable and un-

acceptable products. Then, during the analysis phase, an optimization process

can be used to estimate the aspiration levels that provided the best account

of the set of accept/reject decisions that were observed. With those optimized1045

aspiration levels, one can subset trials into sets of high and low salience trials

for each attribute. This would represent a more naturalistic decision process as

participants freely select their own aspiration levels, and it would not require

a stationarity assumption, though it may be challenging to apply in practice

particularly with respect to adequate trial numbers for analysis.1050

Overall, we find promise for the use of SFT in consumer choice contexts,

given careful experimental design and analysis. We conclude with two recom-

mendations for future research in this domain. Firstly, when tasked with a

complex decision rule, such as a conjunction, correct use of the rule may in-

crease if participants are provided with feedback throughout the task. This1055

may prevent participants from erroneously slipping into a simpler choice rule,

such as focusing on a single product attribute. Furthermore, we suggest future

research explores preferential rather than veridical choice rules, to enhance the

ecological validity of the approach. Secondly, symbolically presented attribute

information appears to be more rapidly processed than numerically presented1060

attribute information, and as a result produces clearer salience effects. It also

has a clear mapping to some purchasing contexts, such as quality and value

ratings for online purchases.
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Supplementary Material: Investigating Consumer
Decision Strategies With Systems Factorial Technology

Gavin J. Coopera,∗, Guy E. Hawkinsa

aSchool of Psychology, University of Newcastle, Callaghan, NSW, 2308, Australia

1. Response Time Survivor Functions For Violations

Shown below are the survivor functions for each of the four main cells of the

design (HH, HL, LH and LL) for those participants that either had significant

violations of the ordering of their response time distributions (HH was slower

than LH/HL or HL/LH was slower than LL) or there was a violation of the

distribution ordering that was visually incorrect though did not reach statistical

significance. Figure 1 displays the survivor functions for Experiment 1, and

Figure 2 shows the same for Experiment 2, split by the Absolute and Relative

display conditions described in the main text.
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Figure 1: Survivor functions for those datasets from Experiment 1 that met the accuracy

threshold but violated the expected ordering of the response time distributions. This was

either a statistically significant violation, or a crossing of the distributions that we deemed to

be sufficiently large so as to question their viability for future analysis.
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Figure 2: Survivor functions for those datasets from Experiment 2 that met the accuracy

threshold but violated the expected ordering of the response time distributions. This was

either a statistically significant violation, or a crossing of the distributions that we deemed to

be sufficiently large so as to question their viability for future analysis.
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